Швейцарські науковці створили штучні молекули
 Команда науковців зі Швейцарської вищої школи Цюріха розробила нову методику, яка надасть можливість створювати складно структуровані об'єкти. Про це пише інтернет-ресурс Eurekalert.
Команда науковців зі Швейцарської вищої школи Цюріха розробила нову методику, яка надасть можливість створювати складно структуровані об'єкти. Про це пише інтернет-ресурс Eurekalert.
Розмір об'єктів становить всього кілька мікрометрів. Після виготовлення такі мікрооб'єкти дуже просто перенести в розчин. Для їхнього створення, дослідники використали крихітні сфери, виготовлені з полімеру або кварцу в якості будівельних блоків, діаметром близько одного мікрона. Кожний такий блок має різні фізичні властивості. Науковці можуть контролювати об'єкти та розташовувати їх в необхідному порядку і послідовності.


 Протягом декількох десятиліть вчені намагалися розробити ефективну магнітну пам’ять з довільним доступом (magnetic random access memory, MRAM), в якій інформація зберігається у вигляді напрямку намагніченості частинки магнітного матеріалу. Так як намагніченість матеріалу може бути змінена з дуже великою швидкістю, такий тип пам’яті розглядається в якості заміни напівпровідникової статичної пам’яті (SRAM) і динамічної пам’яті (DRAM). Однак, при створенні комірок MRAM-пам’яті різного типу вчені стикалися з низкою досить складних проблем. Дослідницька група з університету Тохоку (Tohoku University), очолювана професором Хідео Оно (Hideo Ohno) і ад’юнкт-професором Сюнсуке Фукамі (Shunsuke Fukami), розробила структуру комірок нового типу магнітної пам’яті, заснованих на ефекті індукованого спін-орбітального моменту (spin-orbit-torque, SOT), який забезпечує швидке перемикання намагніченості комірки.
Протягом декількох десятиліть вчені намагалися розробити ефективну магнітну пам’ять з довільним доступом (magnetic random access memory, MRAM), в якій інформація зберігається у вигляді напрямку намагніченості частинки магнітного матеріалу. Так як намагніченість матеріалу може бути змінена з дуже великою швидкістю, такий тип пам’яті розглядається в якості заміни напівпровідникової статичної пам’яті (SRAM) і динамічної пам’яті (DRAM). Однак, при створенні комірок MRAM-пам’яті різного типу вчені стикалися з низкою досить складних проблем. Дослідницька група з університету Тохоку (Tohoku University), очолювана професором Хідео Оно (Hideo Ohno) і ад’юнкт-професором Сюнсуке Фукамі (Shunsuke Fukami), розробила структуру комірок нового типу магнітної пам’яті, заснованих на ефекті індукованого спін-орбітального моменту (spin-orbit-torque, SOT), який забезпечує швидке перемикання намагніченості комірки. Австралійські вчені з Мельбурнського королівського технологічного університету (Royal Melbourne Institute of Technology, RMIT University) оголосили про розробку інноваційного матеріалу, здатного збільшити ефективність сонячних батарей за рахунок кращого поглинання світла.
Австралійські вчені з Мельбурнського королівського технологічного університету (Royal Melbourne Institute of Technology, RMIT University) оголосили про розробку інноваційного матеріалу, здатного збільшити ефективність сонячних батарей за рахунок кращого поглинання світла. Дослідники зі Стенфордського університету (Stanford University) представили нову технологію отримання зображень, яка напевно обрадує будь-якого вченого.
Дослідники зі Стенфордського університету (Stanford University) представили нову технологію отримання зображень, яка напевно обрадує будь-якого вченого. Електронні пристрої різного виду з кожним днем стають все більш складними і мініатюрними, і точно такі ж кардинальні зміни зазнають технології, використовувані при виробництві та ремонті цих електронних пристроїв. Але в деяких випадках складність електронного пристрою унеможливлює процес пошуку виниклої несправності і її усунення, саме для таких “важких” випадків дослідники з Каліфорнійського університету в Сан-Дієго розробили нову технологію самовідновлення, в якій використовуються крихітні нанодвигуни, здатні самостійно шукати і зарощувати незначні механічні ушкодження, наприклад, мікротріщини.
Електронні пристрої різного виду з кожним днем стають все більш складними і мініатюрними, і точно такі ж кардинальні зміни зазнають технології, використовувані при виробництві та ремонті цих електронних пристроїв. Але в деяких випадках складність електронного пристрою унеможливлює процес пошуку виниклої несправності і її усунення, саме для таких “важких” випадків дослідники з Каліфорнійського університету в Сан-Дієго розробили нову технологію самовідновлення, в якій використовуються крихітні нанодвигуни, здатні самостійно шукати і зарощувати незначні механічні ушкодження, наприклад, мікротріщини. 
		
		 
		 
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
      
 Олена
 Олена Anna
 Anna